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INTRODUCTION
Ovarian cancer represents the fifth cause of deaths from

cancer accounting to 21,750 new cases and 13,940 deaths

expected in the USA in 2020 [1, 2]. Due to late diagnosis of

ovarian cancer, the cancer cells are already disseminated to

the peritoneal cavity at diagnosis and thus impose a serious

clinical challenge [3–5]. Ovarian tumors may be divided

into three types in particular: epithelial, germ cell, and

stromal cells—epithelial carcinoma being the most abun-

dant [6]. Furthermore, within epithelial tumors there are

four subtypes, serous, endometrioid, clear cell, and

mucinous—wherein serous tumors are the most lethal

[6–8]. The first line treatment for ovarian cancer is

cytoreductive surgery followed by chemotherapy mainly

combination of carboplatin and paclitaxel [9, 10]. Initial

response of this combination therapy is very high (70%),

however after few treatments, patients develop cisplatin

resistance leading to tumor relapse and recurrence [11, 12].

Recently, several investigators have indicated the presence

of cancer stem cells (CSCs) also known as cancer initiating

cells in tumors as putative entities responsible for cancer

initiation and progression [13, 14]. These CSCs have been

reported to be chemo- and radio- resistant, and ultimately

leading to cancer recurrence [15–19]. Therefore, it is

crucial to understand the biology of CSCs including their

regulation in order to develop therapies that can target both

the cancer cells andCSCs and thus provide highly effective

therapy for the treatment of cancer. Present review article

briefly covers the biology of different populations of CSCs

in ovarian cancer based upon several reportedCSC specific

biomarkers and cell surfacemarkers andpotential therapies

being developed recently to target CSCs.

CANCER STEM CELLS
Cancer arises from a cell type within the tumors that can

undergo self-renewal and promotes tumorigenesis—these

cells are known as tumor initiating cells or cancer stem

cells (CSCs). Various specific markers including but not

limited to ALDH1/2, CD133, CD117, CD24, CD34,

CD44, EpCAM, NANOG, OCT 3/4, LGR5 and LY6A

have been reported and used in isolation and characteri-

zation of CSCs from ovarian cancer cell lines, ovarian

cancer, and ascites collected from patients with recurrent

ovarian cancer [20, 21]. Currently, it is accepted that CSCs

are not only responsible for the development of chemo-

therapeutic and cytostatic resistances, but also for primary

tumor growth, metastasis and tumor relapse [22–24].

In addition to their origin and morphologies, these

malignant populations also vary in their biological

behavior [24]. A tiny population of stem cells with embry-

onic characteristics from normal human ovaries [25–29]

have been suggested as progenitors [28–30], however, this

has yet to be elucidated. The high level of non-consistent

gene mutations giving rise to heterogeneous populations

making a daunting task in identifying a suitably effective

target. Even though the existence of CSCs has been

identified in a variety of tumors, their origin is not well

understood. Owing to the common characteristics and

self-renewal mechanisms shared between stem as well as

CSCs, it is speculated that cancer may be originating from

the transformation of normal tissue specific stem cells [31]

i.e. ovarian stem cells in this instance. High levels of

expression of several oncogenes and transforming genes in

CSCs support the hypothesis that CSCs could be a result of

transformation of normal stemcells present in adult tissues

[31]. However, this hypothesis needs to be tested. Ovarian

CSCs have been attributed with characteristics of self-

renewal, tumor-initiation, growth, differentiation, drug

resistance, and tumor relapse [31]. In this study an over-

looked and unconventional role of PTTG1 as a marker of

CSCs (in normal ovaries, benign, borderline, high grade

tumors and ascites derived tumors) and its ability to

modulate CSCs via the ovarian germline and stemness-

related genes was dissected very intricately and reported

for the first time by exploring the self-renewal and

epithelial-mesenchymal transition pathways regulated by

PTTG1.

Recently, our group have also identified and character-

ized ovarian stem cells and CSC compartments on basis of
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unique germline stem cell specific marker VASA with the

help of co-expression studies. Non-proliferating and qui-

escent stem cell populations were identified in normal

ovaries besides benign, borderline and high-grade ovarian

tumors. Typically, two distinct stem like/cancer stem-like

cells expressing various combination of markers were

detected in the samples including normal ovaries [31–

33]. In a quest towards identifying several heterogeneous

CSC populations in ovarian tumors and metastatic ascites

derived fluid, our group has extensively characterized

these cells with the aid of several biomarkers and stemness

associated genes. In one study, the germline stem cell

marker associated with the normal ovarian stem cells was

found to be co-expressed with most of the CSC specific

surface markers with their prominent localization in the

ovarian surface epithelium (OSE) layer and the adjacent

ovarian cortex [33]. An interesting localization, distribu-

tion and predominance of specific combination ofmarkers

were detected across the normal ovaries, benign, border-

line and high-grade ovarian tumor samples from patients.

At the same time, other study revealed the proliferating

and quiescent populations of CSCs with the aid of Ki67

within similar samples [33]. Further, we reported the

exclusive localization of an oncogene PTTG in not only

normal ovaries, benign, borderline and high-grade ovarian

tumors but also the ascites fluid [31]. We reported for the

first time a systematic expression profiling of various CSC

markers and their co-expressionwith the oncogene PTTG.

Our study highlighted that the stem cell specific self-

renewal related and EMT specific pathways [31] executed

CSC regulation by PTTG. An interesting network of

stemness pathways governing the various CSC popula-

tions in ovarian tumors and similar cellular signaling

networks operating in ascites derived CSCs was antici-

pated based on persistence of similar CSC populations.

Hence, a thorough understanding of the stem cell contri-

bution to tumor pathogenesis (i.e. tumor initiation,

dissemination and eventual culmination into therapy resis-

tance) attributed to CSCswarrant a thorough investigation

while not overlooking real time patient-level clinical

scenario of treatment regimen administered. Some of the

commonly identified cancer stem cells in ovarian cancer

are listed in Table 1.

POTENTIAL THERAPIES FOR OVARIAN CANCER
Ovarian cancers are difficult to treat due to their com-

plexity and heterogeneity from patient to patient. Presence

of CSCs in ovarian cancer and ascites are resistant to

chemotherapy, and their amplification occurs upon treat-

ment with currently used chemotherapies. Investigators

have shown enrichment of these CSC populations when

treated with chemotherapy, in vitro and in experimental

models, resulting in increased drug resistance [34, 35].

ALDH1A1+ CSCs have been implicated in rendering

resistance to the PARPi in BRCA2-mutated epithelial

ovarian cancer [36]. A type I receptor tyrosine kinase-like

orphan receptor (ROR1) expressed during embryogenesis

and in several cancers is expressed in ovarian CSCs and

contributes towards migration/invasion or spheroid for-

mation in vitro and tumor engraftment in immune-

deficient mice thus serving as a potential targetable

molecule [37]. Recently propagation of primary ovarian

CSCs specific for individual patient, followed by 3D

hanging drop suspension culture to establish spheroidal

cultures and xenografting in immuno-compromised mice

for pre-clinical drug screening, especially for assessing

Table 1. Commonly identified cancer stem cells in ovarian cancer.

Marker Type of protein References

CD24 Cell surface transmembrane glycoprotein [31], [104–110]

CD34 Cell surface transmembrane glycoprotein [31], [111], [112]

CD44 Cell surface transmembrane glycoprotein [31], [113–116]

CD105 Cell surface transmembrane glycoprotein [112]

CD117 Tyrosine kinase receptor [31], [117–122]

CD133 Cell surface transmembrane glycoprotein [31], [117], [123–127]

EpCam Cell surface transmembrane glycoprotein [31], [128], [129]

ROR1 Tyrosine kinase receptor [37], [130]

ALDH Cytosolic aldehyde dehydrogenase enzyme [31], [131–134]

SOX2 Transcription factor [31–33], [131–134]

OCT4 Transcription factor [31–33], [80]

NANOG Transcription factor [31–33], [138–141]

MYC Transcription factor [23], [142]

ABCG1, ABCG2 ATP binding cassette transporter [143–145]

PTTG1 Cytosolic/nuclear protein [31]

LGR5 Cell surface membrane protein [31], [32], [51]

DDX4/VASA ATP-dependent RNA helicases [29], [31], [32], [146]

IFITM3/FRAGILIS Cytosolic protein [31], [32], [147]

SSEA4 Cytosolic protein [31], [32]

STELLA Cytosolic and nuclear protein [32], [148], [149]

Note: Some of the information are taken from Kenda Suster N, Virant-Klun, I [28].
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patient-specific (personalized) responses to chemothera-

peutics and for delving deeper into understanding thera-

peutic resistance from a CSC standpoint have been

established. Such platforms may enable testing of CSC

heterogeneity and differential suppression as well as

enrichment of sensitive and resistant populations respec-

tively [38]. Since phenomena of EMT, chemoresistance,

tumor invasion, metastasis, recurrence and CSCs are

inter-related, development of multi-targeted approaches

in the future may help to eradicate various CSC popula-

tions expressing CD117, CD133, Notch and targeting

of EMT/CSCs pathways such as PI3K/mTOR, JAK2/

STAT3, DNA methyltransferase, p53 mediated apopto-

sis, EGFR/Stat3, TGF-b, Notch3/ERK etc. may prove

highly promising. EMT targeting approaches to over-

come resistance feature are worth pursuing and system-

atic evaluation of clinical efficacy in clinical trials are

further warranted [39, 40]. In recent years, varied ther-

apies are being tested to target CSCs in order to reduce

or eliminate recurrence of cancer which are addressed in

following sections.

Targeting of Self-renewal Signaling Pathways

Mutations, overexpression and dysregulation of several

CSC self-renewal pathways have been implicated in

the progression, metastasis, and recurrence of ovarian

cancer. These pathways often lead to growth and main-

tenance of ovarian CSCs. Some of these pathways include

Notch, PI3K/PTEN/AKT, JAK/STAT, Wnt/b-catenin,
and Sonic Hedgehog (SHH) (Fig. 1). Current research

has focused on these signaling pathways in the context of

targeting of CSCs.

Notch Signaling Pathway

The Notch signaling pathway is an evolutionarily con-

served signaling cascade involved in embryonic develop-

ment. Additionally, increased expression of Notch3 has

correlated with poor prognosis in patients with ovarian

cancer. It plays a critical role in maintenance, differenti-

ation, proliferation, communication, and apoptosis of

progenitor cells; and inextricably intertwined for many

cancers, including ovarian cancer [41, 42]. More specif-

ically, it contributes toward the maintenance of ovarian

CSCs and their resistance to chemotherapy.

The protein coding gene Notch3 is amplified and over-

expressed in the majority of high-grade serious ovarian

carcinoma (HGSOC) [43]. The most highly expressed

Notch3 ligand is Jagged1. This is expressed primarily in

mesothelial cells in a tumor microenvironment, indicating

that this pathway likely contributes to the signaling that

regulates cell adhesion and tumor proliferation [42, 43].

Notch3 has also been shown to play a critical role in

chemoresistance and stemness of ovarian CSCs, and it can

be used as a prognostic indicator. Activation of Notch

receptors leads to proteolytic cleavage of the intracellular

Notch domain mediated by g-secretase. This cleaved

domain then translocates to the nucleus, where it regulates

gene transcription [44]. It has been reported that over-

expression of Notch3 results in increased expression of

stem cell markers such as OCT4, SOX2, and NANOG.

OCT4 promotes self-renewal of CSCs, while SOX2 is

required for their maintenance [43]. Notch overexpression

also causes enhanced expression of a transport protein

(ABCG1) that increases chemo-resistance, specifically to

platinumand carboplatin. In addition, it leads to expansion

Figure 1. Schematic representation of various factors regulating the signaling pathways involved in cancer stem cell self-renewal,

differentiation and metastasis.
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of the side population of CSCs, resulting in increased

chemoresistance [43, 44].

Downstream effects of Notchwere improved by knock-

down of Notch3. Inhibition of Notch led to depletion of

total number of ovarian CSCs along with increased tumor

sensitivity to platinum [44]. Additionally, down-

regulation of Jagged1 led to increased sensitivity to che-

motherapy, further supporting the evidence that the Notch

pathway contributes to stemness and chemoresistance

[43]. One study used a g-secretase inhibitor in conjunction
with cisplatin to induce DNA damage, cell cycle arrest,

and apoptotic cell death [42]. Notch3 protein when exam-

ined in primary and recurrent tumors from the same

patients showed elevated expression levels in the recurrent

tumors as compared to the primary tumors indicating its

relationship with poor prognosis [43, 44], suggesting that

the Notch pathway is a promising candidate for targeted

therapies.

Wnt/b-Catenin Pathway

Another important pathway relevant to both embryogen-

esis and ovarian cancer is the Wnt/b-catenin pathway.

During embryogenesis, it regulates cell fate and is

involved in the normal development of ovaries and fal-

lopian tubes. In adults, it is critical for self-renewal in

tissues, and plays a role in maintenance, quiescence, and

chemoresistance of stemcells [45, 46]. Since, this pathway

is so complex, its signaling appears to differ among

different histotypes of ovarian cancer.

In its deactivated form, b-catenin is degraded within

proteasomes. However, on activation of Wnt/b-catenin
pathway,b-catenin is not phosphorylated and it is released
from the destruction complex and translocates to the

nucleus, where it acts as a transcription factor, thereby

activating Wnt target genes – including those involved in

stemness and chemoresistance [47–50]. These target

genes include those that code for leucine-rich-repeat-

containing G protein-coupled receptors (LGR), which is

not only expressed in ovarian cancer but also in several

cancer types [51]. LGR5 is a stem cell marker for ovarian

stem cells and LGR6 is a cancer stem cell marker for

fallopian tube, and expression of either one is a sign of

elevated Wnt significantly [51–54]. Elevated Wnt signal-

ing in tumors indicates that Wnt signaling is necessary for

the expression of the stem cell factors that support tumor

growth and maintenance [51]. Down-regulation of LGR5

has been found to be associated with lower CSC-like

phenotypes and lower chemo-resistance properties in

vitro. Additionally, silencing of LGR5 inhibited stemness

and chemo-resistance in vivo, specifically through inhi-

bition of the Wnt/b-catenin signaling pathway [53–55].

Evidence show that, when Wnt target genes are acti-

vated, a hypoxic niche leads to CD117 expression, leading

to Akt activation and nuclear b-catenin expression, which
induces a drug transporter that leads to chemoresistance

[43]. Knockdown of CD117 by using specific siRNA

results in lower numbers and size of ovarian CSC sub-

populations and their pro-tumorigenic activity, indicating

that CD117 contributes to the tumorigenic and chemore-

sistant properties of ovarian CSCs throughWnt activation

[48]. This is further supported by the finding that CD117

overexpression leads to the upregulation of ATP-binding

cassette G2 (ABCG2) in the Wnt/b-catenin pathway,

enhancing chemoresistance. Similarly, expression of

Wnt/b-catenin target genes and ligands were upregulated
in chemoresistant ovarian cancer cells, and these cells

showed high expression of CSC markers [54, 55]. More

importantly, it was found that Wnt/b-catenin specific

inhibitors sensitize ovarian CSCs to chemotherapy and

reduce the number of CSC subpopulations, indicating that

inhibition of this pathway can stifle CSC characteristics

and enhance chemosensitivity [55].

Raghavan et al [56] found that tumor-associated

macrophages are responsible for promoting metastasis,

angiogenesis, and tumorigenesis within the tumor micro-

environment, so these are likely to play a role in recur-

rence,metastasis, resistance, and preservation of stem-like

phenotypes through Wnt signaling. These investigators

also found that paracrine Wnt activation during interac-

tions between CSCs and M2 macrophages make up a

positive feedback loop, which likely contributes to phe-

notypes that are more aggressive. This evidence further

supports that Wnt pathway as a potential target, particu-

larly for the reduction/elimination of CSC and M2

macrophages in the tumor microenvironment. Another

promising therapy was found to be theaflavin-3, 3’digal-

late (TF3). This compound was shown to inhibit ovarian

CSCs by inducing apoptosis and cell cycle arrest and

inhibiting angiogenesis through the Wnt/b-catenin path-

way [57].

Hedgehog Signaling Pathway

During embryogenesis, the Hedgehog pathway regulates

tissue polarity and pattern along with stem cell develop-

ment and maintenance [58]. This pathway consists of

secreted ligands: Sonic hedgehog (Shh), Indian hedgehog

(Ihh), and Desert hedgehog (Dhh); Hedgehog receptors:

Patched (PTCH1, PTCH2) and Smoothened (SMO); and

Gli transcription factors 1, 2, and 3 [59]. Activation of this

pathway is associated with regulation of CSC phenotypes

like self-renewal, differentiation, and tumor initiation

[59]. This pathway can become disrupted in two ways in

ovarian cancer: 1) disrupted by the overexpression of

endogenous pathway ligands such as Shh; 2) disrupted

through using inhibitor vismodegib [60].

It has been reported that ovarianCSCs exhibit increased

intracellular Gli1 expression, which correlates with

increased formation of spheroids with CSC properties.

Gli1 has also been found to play a role in expression of

ABC transporters ABCG1 and ABCG2 by directly bind-

ing to their promoter regions resulting in increased resis-

tance to both cisplatin and paclitaxel in spheroid forming
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of ovarian cancer cells [61, 62]. Additionally, there is

higher expression of SMO and Gli1 in borderline and

malignant tumor tissues than in benign tumor and normal

ovarian tissues [63, 64], indicating their importance in

progression of ovarian cancer.

Investigators found that the inhibition of the hedgehog

pathway by cyclopamine resulted in a decrease in Gli

concentrations followed by decreased cancer cell prolif-

eration [65]. Furthermore, it was demonstrated that cyclo-

pamine also inhibited tumor growth and impaired spheroid

function. Exogenous expression of Gli was found to

increase both cell proliferation and invasiveness by at

least 200%, demonstrating the effect of Gli on ovarian

cancer cells proliferation [66]. Hh pathway components

SMO, PTCH and GLI1 were reported to be activated in

benign, borderline and malignant ovarian epithelial

tumors and implicated its association with cisplatin resis-

tance [66–68]. This clearly implicates importance of

Hedgehog signaling in malignancy and chemoresistance

of ovarian CSCs. GDC-0449, a potent hedgehog inhibitor,

is in the clinical phases for its application in treating

ovarian cancer patients [68].

PI3K/PTEN/AKT Pathway

Phosphatidylinositol 3-kinases (PI3K) is an enzyme

involved generally in cell growth, proliferation, differen-

tiation, motility, survival, and intracellular trafficking. It

appears that the PI3K/PTEN/AKT is activated in approx-

imately half of high-grade serious ovarian carcinoma

(HGSOC), making it a potential therapeutic target for

ovarian cancer. Additionally, high expression of activated

Akt is associated with poor prognosis and survival, due to

mutations that could occur in several components of this

pathway [69, 70].

This pathway has been found to regulate enrichment of

ovarian CSCs, maintenance of the stem cell (SC) pheno-

type, and chemoresistance. Ovarian spheroids show high

expression of pAKT1 and low expression of PTEN, along

with increased resistance to paclitaxel [71–74]. Addition-

ally, inhibition of AKT1 results in decreased spheroid

formation and migration. Furthermore, knockdown of

AKT1 using siRNA led to loss of CSCmarker expression,

loss of spheroid formation, and loss of paclitaxel resis-

tance [75, 76]. In cisplatin-resistant CSCs, AKT regulates

expression of PPM1D, a gene that codes for a protein,

which inhibits DNA damage and apoptotic response after

DNA damage. Moreover, the down-regulation of AKT

activity led to loss of PPM1Dstability and an increase in its

degradation [77, 78]. This, in turn, led to increased

response to cisplatin, indicating the importance of this

pathway in initiation and maintenance of CSCs and their

chemoresistance, making this pathway an ideal target for

ovarian cancer therapy.

PI3K/PTEN/AKT pathway also appears to play a cru-

cial role through C-Kit, a well-known proto-oncogene

of ovarian CSCs [79]. Its ligand, stem cell factor (SCF)

can exist either in soluble form or as a transmembrane

protein. SCF interacts with C-kit to regulate cell via-

bility, proliferation, and differentiation. SCF was found

in high levels in epithelial ovarian cancer, but it appears

to be only membrane bound in tumor cells [79]. Both

secretory and membrane bound forms of SCF are

observed in tumor associated macrophages (TAM) and

fibroblasts (TAF). Interestingly, in the circulating mono-

cytes of healthy patients neither of these forms were

observed. However, both forms were produced upon

differentiation into macrophages, with M1 and M2

polarization having no effect [79]. Both of these iso-

forms were then able to activate the AKT pathway in

cells with c-Kit receptor. This effect was also counter-

acted by imatinib, a tyrosine kinase inhibitor. These

findings are thus an evidence of a juxtacrine/paracrine

circuit in ovarian cancer that may exist and act through

the AKT pathway [79].

JAK/STAT Pathway

The JAK/STAT signaling pathway is a universally

expressed intracellular signal transduction pathway and

is involved inmany crucial biological processes, including

cell proliferation, differentiation, apoptosis, and immune

regulation. JAK/STAT pathway also generally regulates

differentiation, proliferation, and survival of stem cells. In

ovarian cancer, the JAK/STAT pathway almost is always

active, with no inhibition or regulation of its activity [80].

This pathway has been reported as an important pathway

in maintaining CSC population especially OCT4 in ovar-

ian cancer [80, 81]. There are four JAK family non-

receptor tyrosine kinases, JAK1, JAK2, JAK3 and TYK2.

It has been reported that JAK1, JAK2 and TYK2 are

ubiquitously expressed, whereas JAK3 is predominantly

expressed in hematopoietic cells. There are several types

of STAT (STAT1, STAT2, STAT3, STAT4, STAT5a and

b). During the activation of the signaling cascade, these

JAK and STAT molecules assemble into homo- and

hetero-dimers, or even into more complex multi-mers

[81]. Jin [82] showed that activation of JAK/STAT3

pathway leads to increased tumorigenesis and metastasis

ability, the transition of cancer stem cells (CSCs), and

chemoresistance in cancer through the regulation of

epithelial-mesenchymal transition (EMT) [82] inducing

transcription factors such as Snail, Zeb1, JUNB, and

Twist1 [83–85]. Activation of JAK/STAT signaling is

triggered by various hormones, cytokines (including the

IL-6 family) [83], and growth factor through a variety of

molecular mechanisms leading to tumorigenesis, tumor

progression and metastasis. Furthermore, the JAK/STAT

pathway regulates expression of several genes needed for

the maintenance of CSC phenotypes and acquisition of

drug resistance [86, 87]. JAK/STAT pathway is a potential

target for therapeutic purpose to treat several disorders

including cancer. Several inhibitors have been synthesized

and tested for their activity in vitro and in vivo. Someof the
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inhibitors are in clinical trials for their application for the

treatment of cancer [88].

OTHER PROMISING THERAPIES
Phenethyl Isothiocyanate (PEITC)

Treating ovarian CSCs with phenethyl isothiocyanate

(PEITC) revealed an anti-CSC activity, defined as reduced

expression of biomarkers for stemness [89]. Koschorke

and colleagues discovered that treating ovarian CSCswith

PEITC impaired the spheroid forming efficiency of the

cells by decreasing their ALDH-positive compartments.

ALDH is a marker for stemness, so this observation

implies that the CSCs are being directly targeted and the

ALDH+ population is decreased resulting in decreased

tumor growth and increased responsiveness to che-

motherapies [89].

Graphene Oxide-Silver Nanoparticle Nanocomposites

One study demonstrated the therapeutic potential of gra-

phene oxide-silver nanoparticle nano-composites for

ovarian cancer by targeting the ovarian CSCs. Ovarian

CSCs were harvested and incubated with the nanocom-

posite. After 3 weeks of incubation, the number of stem

cell colonies were reduced which hinted to the toxicity of

the nanocomposite towards the ovarian CSCs [90]. The

mechanism for the composite was to generate reactive

oxygen species, leaking of lactate dehydrogenase, reduced

mitochondrial membrane potential, and increased expres-

sion of apoptotic genes, all of which contribute to reduce

stem cell viability. Choi and colleagues [90] added sali-

nomycin to themedia, which, in tandemwith the graphene

oxide-silver nanoparticle nanocomposites, and showed an

increased rate of apoptosis. This therapy is advantageous

in that it requires very low concentrations to be effective,

which could result in decreased pricing for therapies along

with the conservation of resources [90].

Verrucarin J and Withaferin A

Recently, Udoh et al [91] and Carter et al [92] showed that

a fungal metabolite from myrothecium verrucaria known

as “Verrucarin J” (VJ) targets both cancer cells and CSCs

in lung and ovarian cancers. Such pronounced effects of

VJ were achieved through the inhibition ofWnt/b-catenin
and Notch1 signaling pathways. In independent studies,

Kakar and his group [93, 94] showed inhibition of tumor

growth and metastasis of ovarian cancer by Withaferin A

(WFA), a product from Withania somnifera, commonly

known as Ashwagandha. These investigators also showed

targeting of CSCs in ovarian cancer by WFA through the

inhibition of transcription of CSC specific genes and those

of Notch1 signaling pathways. However, efficacy of these

drugs remains to be tested in humans.

Several strides have been performed in order to target

ovarian cancer and the CSCs in particular which were

recently summarized during the American Association of

Cancer Research/Rivkin Center Ovarian Cancer Research

Symposium held at the University of Washington in

September 2018. Current state of the art of ovarian cancer

treatment were highlighted and manifold efforts of

researchers towards multiple targeting modalities such as

clinical trials employing novel agents, including poly-

ADP-ribose polymerase (PARP) inhibitors, other DNA-

damaging agents, vascular endothelial growth factor

receptor inhibitors, mirvetuximab soravtansine, and

immune checkpoint blockade. Innovative novel technol-

ogies such as antibody-drug conjugates targeting surface

receptors in ovarian cancer either alone or in combination

with immune checkpoint blockade exhibited strong trans-

lational potential. Potential therapeutic combination part-

ners such as DNA repair inhibiting agents, those targeting

cellular checkpoints, and drugs with potential against

CSCs were identified. Novel therapeutic strategies based

upon endoplasmic reticulum stress response, epithelial to

mesenchymal transition, and targeting of surface mole-

cules using novel antibody drug conjugates revealed anti-

tumor potential in pre-clinical models and its tremendous

clinical potential. Study highlights pronounced the signif-

icance of developing effective and combinatorial treat-

ment modalities such as immune checkpoint inhibitors

with other immunotherapies, PARP inhibitors, and stan-

dard chemotherapeutic regimen, rather than a single drug

based treatment modality [95–101]. Besides the primary

ovarian tumor, peritoneal tumor microenvironment sup-

porting the ascites derived CSCs and the transition into an

aggressive metastatic form of ovarian cancer is implicated

rather than the potential primary tumor properties and thus

targeting ascites derived CSCs is equally pertinent. Some

of the key and novel treatment strategies addressing

therapy-induced resistance arising out of putative CSC

dormancy and plasticity, highly efficient drug efflux

pumps and DNA repair mechanisms have been recently

summarized by Ahmed and her group [102].

CONCLUSIONS
Owing to the complexity of the mechanisms of regula-

tion of ovarian cancer growth and metastasis, there are

many opportunities for disrupting these cancer-causing

processes. However, there is still significant research to

be performed in relation to implementation of these

therapies and the best ways to tailor them to individual

cases of ovarian cancer. Precision medicine with tar-

geted treatment for ovarian cancer patients based on

their individual genetic susceptibility and molecular

signatures requires patient stratification and further

efforts in terms of clinical studies [101]. The signaling

cascades involved in stemness, chemoresistance, and

metastasis, such as Wnt, Notch, and Hedgehog, etc.

provide many potential points of inhibition of growth

of ovarian cancer as aptly reviewed recently by Keyvani

and group [103]. In addition, better classification and

understanding of CSCs in ovarian cancer, will hopefully

lead to better understanding of the origin of ovarian
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cancer malignancies and even more potential sites of

inhibition may be revealed.
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