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Abstract: Evidence has accumulated that postnatal tissues contain developmentally early stem cells that remain in a dormant
state, aswell as stemcells that aremoreproliferative, supplying tissue-specificprogenitor cells and thusplayingamoreactive role
in the turnover of adult tissues. Themost primitive, dormant, postnatal tissue-derived stem cells, called very small embryonic like
stem cells (VSELs), are regulated by epigenetic changes in the expression of certain parentally imprinted genes, a molecular
phenomenon previously described for maintaining primordial germ cells (PGCs) in a quiescent state. Specifically, they show
erasure of parental imprinting at the Igf2–H19 locus,which keeps them in aquiescent state in a similarmanner asmigratingPGCs.
To date, the presence of these cells in adult postnatal tissues have been demonstrated by at least 25 independent laboratories.
We envision that similar changes in expression of parentally imprinted genes may also play a role in the quiescence of dormant
VSELs present in other non-hematopoietic tissues. Recent data indicate that VSELs expand in vivo and in vitro after
reestablishment of somatic imprinting at the Igf2-H19 locus by nicotinamide treatment in response to stimulation by pituitary
gonadotrophins (follicle stimulating factor, luteinizing hormone and prolactin) and gonadal androgens and estrogens. These cells
could be also successfully expanded ex vivo in the presence of the small molecule UM177.

Keywords: Adult stem cells, Primordial germ cells, Imprinted genes, Igf2–H19 locus, Stem cell quiescence, Tissue
regeneration, Tumorigenesis.

INTRODUCTION
Despite a vast amount of work, the hierarchy within the

adult stem cell compartment is still incompletely under-

stood. Various types of stem cells residing in postnatal

tissues that possess more than one germline specification

potential have been described [1–13]. The undisputed fact

that adult tissues contain such cells gives rise to three

important questions that we will discuss in this review.

The first question is related to the fact that the first stem

cells specified in the developing embryo in both rodents

and humans are primordial germ cells (PGCs). Therefore,

one could ask: How much germline potential is present in

adult stem cells? This question is highly relevant to

hematopoietic stem cells (HSCs), because as we will

discuss there is an intriguing developmental link between

specification and migration in the embryo of PGCs and in

the origin of primitive and definitive HSCs [14–17].

Moreover, these cell populations also share several mar-

kers and respond to stimulation by sex hormones (SexHs)

[18–21].

The second question to be answered is: Are some of the

stem cells from the embryonic stage of development

deposited into and reside in adult tissues in the quiescent

state? This emerging concept suggests a developmental

continuum in the stem cell compartment, beginning from

the fertilized zygote to adult tissue committedmonopotent

stem cells. If this is correct, then the end of organogenesis

does not mean complete elimination of developmentally

early stem cells from postnatal tissues. Such cells,

described as very small embryonic like stem cells

(VSELs), survive in the adult body as a potential backup

for tissue-committed stem cells and play a role in their

turnover [22–24].

The third question is: Why do some developmentally

early VSELs that express markers of pluripotency remain

in a quiescent state in adult tissues, and why do they not

form teratomas or complete blastocyst development? To

address this question, we demonstrated that the most

primitive developmentally early VSELs in adult tissues

could be kept in a quiescent state, similarly as migrating
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PGCs, by changes in expression of certain parentally

imprinted genes [25]. Proper expression of these genes

is crucial for the initiation of embryogenesis and cell

proliferation [26]. By contrast, these genes are expressed

in embryonic stem cells (ESCs) and induced pluripotent

stem cells (iPSCs), which enables these cells to complete

blastocyst development and grow teratomas in in vivo

models [25, 27].

Based on the aforementioned, we will discuss these

three issues and present evidence that developmentally

early VSELs, sharing several markers with PGCs and the

epiblast, are kept in a quiescent state in adult tissues by

changes in expression of parentally imprinted genes. In

particular, we will focus on bone marrow (BM)-residing

VSELs. Evidence accumulated suggests that BM-residing

VSELs can be specified into HSCs, endothelial progenitor

cells (EPCs) and mesenchymal stem cells (MSCs).

HOWMUCHGERMLINEPOTENTIAL IS PRESENT
IN ADULT BONE MARROW STEM CELLS?
Thefirst stemcells that becomespecified in theearliest stages

of embryogenesis in the epiblast of the post-implantation

blastocyst are PGCs, as mentioned above [28, 29]. The

epiblast is a precursor of the entire embryo proper, and

PGCs are precursors of gametes that pass genetic infor-

mation, encoded in parental DNA, and mitochondria

to the next generation. These cells, endowed with devel-

opmental totipotency, become specified in the proximal

part of the epiblast and, after specification, leave the

embryo proper and migrate for a short period of time to

the extra-embryonic mesoderm, where they begin to

amplify, make a turn, and re-enter the embryo proper

through the primitive streak. While continuing to amplify

in number, the PGCs migrate toward the genital ridges

[30],where they settle and initiate gametogenesis. On their

migratory route through the embryo proper toward the

genital ridges, they cross the part of the embryo called the

aorta–gonado–mesonephros (AGM) region [31].

As shown in Figure 1, the developmental route of PGCs

overlaps with the emergence of the first primitive HSCs in

time and space—first in the so-called blood islands at the

bottom of the yolk sac and later with the emergence of

definitive HSCs in the AGM region of the developing

embryo proper.Both PGCs andHSCs are highlymigratory

stem cells and it is very likely that some of the PGCs,while

migrating in the extra-embryonic mesoderm, give rise to

hemangioblasts, which are precursors for both primitive

HSCs and EPCs. Subsequently, while they migrate in the

embryo proper through the AGM region towards the

genital ridges, some of them become specified into defin-

itive HSCs detectable in the hemangiogenic endothelium

of the dorsal aorta [31–34].

Based on this close developmental overlap between

PGCs andHSCs, one can ask howmuch germline potential

is in HSCs, and, vice versa, whether germline-derived

cells share genes involved in the development of both

lineages. In fact, mounting evidence has accumulated that

HSCs are responsive to several pituitary gonadotrophins

and gonadal sex hormones (SexHs) and share certain

molecular markers typical of germ development, such as

the Sall4 transcription factor [35, 36]. On the other hand,

germline-derived cells express the erythropoietin recep-

tor, which is well known to be expressed by hemangio-

blasts and cells from the erythroid lineage. Accordingly,
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Figure 1. Migration of PGCs and

the developmental origin of primi-

tive and definitive hematopoiesis.

The specification of the first primitive

HSCs in the yolk sac blood islands

as well as the origin of definitive HSCs

in the aorta–gonado–mesonephros

(AGM) region are chronologically and

anatomically correlatedwith the devel-

opmentalmigration of primordial germ

cells in extra- and intra-embryonic

tissues. For reasons of simplicity, the

developmental difference between the

times when primitive and definitive

hematopoiesis are initiated is not

reflected on this figure by changes in

embryo maturation.

2 M. Ratajczak et al.

PSCRO � http://cancerstemcellsresearch.com



wedemonstrated that human andmurine germline-derived

teratocarcinoma cells lines as well as ovarian cancer cell

lines express functional erythropoietin receptors and

respond to erythropoietin by chemotaxis, increased adhe-

sion, and phosphorylation ofMAPKp42/44 andAKT [37].

On the other hand, to better address the potential role

of exHs in the development of HSCs, we performed a

series of experiments to address the influence of follicle-

stimulating hormone (FSH), luteinizing hormone (LH),

prolactin (PRL), progesterone, androgens, and estrogens

on murine hematopoiesis [21]. We found that 10-day

administration of each of the SexHs evaluated in this

study directly stimulated expansion of HSCs in BM, as

measured by an increase in the number of these cells

(�2–3x), an observation supported by enhanced bromo-

deoxyuridine (BrdU) incorporation into the nuclei of these

cells. The percentage of BrdU+ Sca-1+ Lin– CD45+ HSCs,

depending on the type of SexH employed, increased from

�25% to 45–60%. This stimulatory effect paralleled

an increase in the number of clonogenic BM progenitors

(�2–3x). Notably, we also observed that murine Sca-1+

Lin– CD45+ HSCs express pituitary and gonadal SexH

receptors and respond to stimulation by phosphorylation

of MAPKp42/44 and AKT. We also observed that admin-

istration of SexHs accelerated the recovery of peripheral

blood (PB) cell counts in sub lethally irradiated mice and

slightly mobilized HSCs into circulation. Finally, in direct

in vitro clonogenic experiments on purified murine pro-

genitor cells, we observed a stimulatory effect of SexHs on

clonogenic potential if added with suboptimal doses of the

colony stimulating factors: CFU-Mix, BFU-E, CFU-Meg,

and CFU-GM. Thus, our data indicates that pituitary-

and gonadal-secreted SexHs directly stimulate the expan-

sion of stem cells in BM [21].

Finally, in further support of this developmental link

between the germline and hematopoiesis, it is important

to mention that several papers have described the shar-

ing of chromosomal aberrations between germline

tumors and leukemias or lymphomas, which suggests

their common clonal origin [17, 38–40]. More direct

evidence has also demonstrated that murine PGCs iso-

lated from embryos, murine testes, and teratocarcinoma

cell lines can be specified into hematopoietic stem/

progenitor cells [15–17, 41, 42]. These findings all

support a close developmental relationship between the

germline and hematopoiesis.

DO EARLY-DEVELOPMENT STEM CELLS
RESIDE IN ADULT TISSUES?
A decade ago, the concept of stem cell plasticity or stem

cell trans-differentiation was proposed [6, 43–48]. Based

on this idea, tissue-committed stem cells, such as HSCs,

could change their fate and differentiate into stem cells for

other lineages, for example, cardiac stem cells. This

concept, however, did not stand up to critical examination

and other explanations for why some degree of chimerism

has been observed in various tissues after transplantation

of bone marrow cells have been proposed. One of these

alternative explanations involves the phenomenon of cell

fusion [49–52].

By contrast, our team has from the beginning proposed

that stem cell plasticity could be explained by the fact that

the adult BM contains early-development stem cells,

which we succeeded in isolating from adult murine

BM cells that were slightly smaller than erythrocytes and

that expressed pluripotency markers, such as Oct-4 and

Nanog, which we called VSELs [24, 53]. Meanwhile, in

the past several years, various cells endowed with multi-

tissue differentiation potential have been identified by

other investigators in adult murine or human BM and,

depending on the methods for how they were isolated,

assigned different names. The examples are spore-like

stem cells [54], multipotent adult stem cells (MASCs) [1],

mesenchymal stem cells (MSCs) [55], multi-lineage-

differentiating stress-enduring (Muse) cells [56], multi-

potent adult progenitor cells (MAPCs) [4], unrestricted

somatic stem cells (USSCs) [3], marrow-isolated adult

multi-lineage-inducible (MIAMI) cells [2], or multipotent

progenitor cells (MPCs) [1, 57]. Interestingly, in addition

to the cells listed above, adult bone marrow has been also

postulated to contain hemangioblasts [58], as well as

cells that retain the potential to differentiate into gametes

(Table 1) [59, 60].

This has created nomenclatural chaos, and probably

several of these stemcells described as separate entities are

in fact overlapping cell populations. We envision that,

most likely, VSELs are at the top of the hierarchy of all of

these various overlapping populations of stem cells that

are endowed with pluri/multipotent differentiation poten-

tial (Figure 2) [61, 62]. In BM tissue, they can give rise to

HSCs, MSCs and EPCs. Further studies are needed to

compare these cell types side by side.

The BM provides a permissive microenvironment for a

variety of stem cells (including, as we envision, VSELs)

circulating in PB during embryonic development to

promote their homing to this organ. Molecular analysis

of gene libraries established from VSELs revealed that,

despite a similar small size, primitive morphology, and

expression of surface markers that allow for their purifi-

cation (Sca-1+ Lin– CD45–), these cells are, in fact,

somewhat heterogeneous [63]. We found at least three

different types of libraries generated from single, sorted

VSELs, and some of these libraries exhibited a strong

epiblast- or PGC-like gene expression pattern. In support

of such a connection, we observed that murine BM-

derived VSELs express several genes that are character-

istic of epiblast SCs (Gbx2, Fgf5, and Nodal) and, more

importantly, of germline specification and migrating

PGCs (Stella, Prdm14, Fragilis, Blimp1, Nanos3, and

Dnd1) [64, 65]. The expression of some of these crucial

genes has subsequently been confirmed by demonstrating

the presence of transcriptionally active promoters in
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these genes. Importantly, we recently observed that BM-

residing VSELs respond in vivo to stimulation by pituitary

and gonadal SexHs and begin to accumulate BrdU [21].

Furthermore, gene expression analysis and immunohisto-

chemical staining confirm that these cells express SexH

receptors [21].

Although cells morphologically and phenotypically

similar to bonemarrowVSELswere found in other tissues,

adult BM-residing VSELs probably migrate during devel-

opment, along with HSCs from sites where fetal hemato-

poiesis is initiated, to fetal liver and subsequently adult

BM [66]. Table 1, reports on early-development stem cells

isolated from adult BM and skin that express germline

markers are listed [67–73], but their relationship toVSELs

requires further study. Nevertheless, these observations

support the concept that developmentally early stem cells

from embryogenesis could be deposited in adult tissues

and that there exists in the stem cell compartment a stem

cell continuum beginning with embryonic development

and extending into adulthood [24].

THE ROLE OF PARENTALLY IMPRINTED
GENES IN MAINTAINING THE QUIESCENCE OF
DEVELOPMENTALLY EARLY ADULT STEM
CELLS
As discussed above, evidence has accumulated that adult

tissues contain certain early-development stem cells that

are endowed with broad trans-germ layer differentiation

and multi/pluripotent—for example, VSELs. Neverthe-

less, to call a given stem cell “pluripotent” requires satis-

fying both in vitro and in vivo criteria. For in vitro criteria,

a pluripotent stem cell candidate has to show undiffer-

entiated morphology, euchromatin, and a high nuclear/

cytoplasmic ratio. Such cells should also express markers

of pluripotency, such as Oct-4, Nanog, and SSEA, and

exhibit bivalent domains in the promoters of genes encod-

ing important developmental, homeobox-containing tran-

scription factors, and female pluripotent stem cells should

reactivate the X chromosome.Moreover, such cells should

differentiate in appropriate culture conditions into cells

from all three germ layers (meso-, ecto-, and endoderm).

On the other hand, in vivo criteria for pluripotent stem cells

include the ability to complement blastocyst development

and grow teratomas in an in vivo assay after injection of

these cells into immunodeficient mice.

VSELs fulfill the above-listed in vitro criteria, despite

the fact that they are highly quiescent in culture, and

special conditions are needed to differentiate them into

various lineages [61, 62, 74–80]. However, VSELs do not

fulfill the in vivo criteria, as they do not complete blas-

tocyst development and do not grow teratomas [25, 81].

The reason for quiescence of these cells is themodification

of expression of certain parentally imprinted genes. Over-

all, there are �50–100 paternally imprinted genes in the

mammalian genome - expressed from the maternal or

paternal chromosome only, that play an important role in

embryonal development. Some of them, for example the

tandem gene insulin-like growth factor 2 (Igf2)–H19, are

of particular importance for the totipotential state of the

zygote, embryogenesis, fetal growth, and pluripotency of

developmentally early stem cells [26, 82–84].

To explain the developmental role of parentally

imprinted genes, mammalian development requires prop-

er gene dosage of these genes, which is enabled by their

imprinting, so that a single parental allele (maternal or

paternal) is expressed in the cell. Therefore, genomic

imprinting is an epigenetic program that ensures the

parent-of-origin-specific monoallelic transcription of

imprinted genes and results in intracellular expression of

imprinted genes from only one of the two paternal chro-

mosomes—derived either from the mother or the father

[85]. The epigenetics behind expression of imprinted

genes is based on the imposition of epigenetic marks by

DNAmethylationwithin differentiallymethylated regions

(DMRs), which are CpG-rich cis-elements within their

loci [26, 82–84]. These epigenetic marks imposed on

DMRs in the female germline act on the promoters of

imprinted genes, which results in the heritable repression

of the maternal chromosomes. By contrast, the imposition

of epigeneticmarks bymethylation of the chromosomes in

Table 1. Selected publications from other authors indicating that stem cells endowedwith germline potential reside in postnatal

non-gonadal tissues [100].

Cells endowed with germline markers residing in BM and skin Reference

Stem cells with germline potential isolated from newborn mouse skin – Oct-4+ cells isolated by FACS from Oct-4–GFP mice,

which are able to give rise in vitro and in vivo to early oocytes. Similar cells were also identified in newborn porcine skin.

[67]

Multipotent stem/stromal cells isolated from porcine skin –Oct-3/4+, Nanog+ Sox-2+ cells isolated from porcine skin and adipose

tissue and able to differentiate into oocyte-like cells.

[68]

SSEA-1+ murine BM cells – Isolated from murine BM by anti-SSEA-1 immunomagnetic beads. In the presence of bone

morphogenetic protein 4 (BMP4), these cells differentiate into Oct-4+Stella+Mvh+ gamete precursors.

[69]

BM-derived germ cell candidates – Oct-4+ Mvh+ Dazl+ Stella+ cells present in BM that may affect the recurrence of oogenesis in

mice sterilized by chemotherapy.

[70, 71]

BM-derived male germ cells – Oct-4+ Mvh+ Stella+ cells isolated as Stra8–GFP cells from bone marrow of Stra8–GFP transgenic

mice. These murine bone marrow-derived cells express several molecular markers of spermatogonial stem cells and spermatogonia.

[72]

Chicken BM-derived precursors of male germ cells – GFP+ transgenic chicken Oct-4+SSEA-1/3/4+ cells isolated from bone

marrow, which give rise to functional sperm after injection into testes.

[73]
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the male germline does not occur at the promoters, but

rather within the intergenic regions (e.g., between the

tandem genes at the Igf2–H19 locus, as shown by black

lollypops in Figure 3).

Figure 3A shows that expression of Igf2 andH19 genes

is regulated by a distal enhancer. Since maternal imprint-

ing at the DMR for this tandem gene is erased (open

lollypops) at thematernal (M) chromosome, this site binds

CTCF protein (insulator), which forms a physical barrier

between Igf2 and H19 and thereby prevents the distal

enhancer from activating transcription of Igf2 from the

maternal allele. By contrast, the DMR region at the

paternal chromosome (P) is methylated (black lollypops),

and CTCF cannot bind to the DNA. Thus, the distal

enhancer activates transcription of Igf2 from the paternal

allele.

While Igf2 promotes proliferation, H19 gives rise to

non-coding mRNA that is spliced into several miRNAs

that negatively affect cell proliferation. As the result of

normal, balanced paternal imprinting in cell nuclei, there

is balanced expression of Igf2 mRNA from paternal and

H19 mRNA from the maternal chromosome [86].

Asmentioned above, erasure of genomic imprints is one

of the crucial mechanisms that prevents PGCs and VSELs

from proliferation, blastocyst complementation, and ter-

atoma formation [25, 81]. As a result of erasure of the

DMR at the Igf2–H19 locus (Figure 3B), both maternal

and paternal DMRs bind insulator protein, and the distal

enhancer activates transcription ofH19 from both parental

alleles. Cells affected by this epigeneticmechanism do not

express insulin-like growth factor 2 (IGF-2), which pro-

motes cell proliferation, and overexpress noncoding H19

mRNA, thereby negatively affecting cell proliferation.

This epigenetic change in expression at the Igf2–H19

locus explains why PGCs and VSELs remain quiescent

[25, 87].

To get a full picture of these epigenetic changes, in

addition to erasure of imprinting at the Igf2–H19 locus,

murine BM-residing VSELs also erase the paternally

methylated imprints within the DMRs for RasGrf1. In

parallel, they hypermethylate the maternally methylated

DMR for the insulin-like growth factor 2 receptor gene

(IGF2R). As a result of these changes, VSELs, like PGCs,

are resistant to insulin/insulin-like growth factor signal-

ing. Specifically, the changes in expression of imprinted

genes lead to a perturbation of insulin/insulin-like growth

factor signaling by downregulation of i) IGF-2,which is an

autocrine factor involved in proliferation ofVSELs, and ii)

RasGRF1, which is a GTP-exchange factor (GEF) crucial

for signaling from the activated insulin-like growth factor

1 receptor (IGF-1R) and the insulin receptor (InsR). In

addition, since the IGF2R serves as a decoy receptor that

prevents IGF-2 from binding to IGF-1R, hypermethyla-

tion of the DMRs on the maternal chromosome encoding

IGF-2R,which leads to overexpression of this gene, has an

additional negative effect on IGF-2 signaling in VSELs

[88]. Our recent data suggests that a very similar mech-

anism is alsomost likely responsible for the quiescent state

of humanVSELs not only in bonemarrow but also in adult

tissues. This mechanism, characteristic of PGCs and

VSELs [25, 87], keeps them in a quiescent state. As we

have shown, the finding that the most primitive stem cells

in adult bone marrow are endowed with long-term recon-

stituting potential [25] has recently been confirmed by

another group [89].

In summary, these epigenetic modifications of

imprinted loci (including Igf2–H19, RasGRF1, and

IGF2R) hampers efficient expansion of these cells in ex

vivo cultures but, on the other hand, prevents them from

undergoing uncontrolled proliferation and teratoma for-

mation in vivo. Curiously,we noticed that a proper somatic

imprinting at this locus could be re-established after

exposure of VSELs to nicotinamide.

CONCLUSIONS
Evidence has accumulated for the existence of a devel-

opmental link between PGCs, VSELs andHSCs, shedding

new light on the developmental hierarchy of the stem cell

Hemangioblast
EPC MSC

VSEL

MAPC

MASC

MIAMI

pre-HSC HSC

Myelopoiesis Lymphopoiesis

?
?

Figure 2. Adult bonemarrow as a home for

various stemcells.Wepropose thatVSELs are

primitive, small, dormant, stem cells that, upon

proper activation, give rise to other, larger

multi/pluripotent stem cells identified by other

investigators in hematopoietic tissues and may

also give rise to hematopoietic/stem progenitor

cells, mesenchymal stem cells, and endothelial

progenitor cells. Abbreviations: VSEL, very

small embryonic-like stem cell, HSC, hemato-

poietic stem cell, EPC, endothelial progenitor

cell, MSC, mesenchymal stroma cells, MASC,

multipotent adult stem cell, MIAMI, marrow-

isolated adult multilineage-inducible cell,

MAPC, multipotent adult progenitor cell.
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compartment in adult BM. Our group has identified

VSELs in adult tissues and demonstrated that epigenetic

modification of certain imprinted genes in these cells plays

a crucial role in controlling their proliferation.On the other

hand, reversal of this imprinting mechanism is crucial to

employing these cells in regenerativemedicine. Currently,

we are testing whether modulation of parental imprinting

to activate genes involved in insulin/somatotropins sig-

nalingwill promoteVSEL expansion, as has recently been

demonstrated for PSCs derived by parthenogenesis [90].

Our encouraging data indicate that we are able to expand

and specify VSELs�3�106 in serum free medium in the

presence of nicotinamide and cocktail of FSH, LH,BMP-4

and KL [91]. Most important in this chemically defined

medium VSELs undergo asymmetric divisions what is an

important hallmark of primitive stemcells [92].Moreover,

another team was successful in ex vivo expression of

VSELs in the presence of the small pyrimido-indole

derivative molecule UM177 [93]. In sum, to date a pres-

ence of these cells in adult postnatal tissues have been

demonstrated by at least 25 independent laboratories [94–

97]. There are also reported new strategies to enrich for

VSELs from hematopoietic tissues [98, 99].
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paternal chromosome (P). Expression of both genes is regulated by a 3’ distal enhancer depicted in green. Since the DMR is unmethylated on the

maternal chromosome, it binds CTCF, and this prevents activation of the Igf2 promoter by the distal enhancer. As a result, only H19 mRNA is
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